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A LEAST ELEMENT THEORY

OF SOLVING LINEAR COMPLEMENTARITY PROBLEMS

AS LINEAR PROGRAMS

by

Richard W. Cottle and Jong-Shi Pang

ABSTRACT

In a previous report [2], the authors have established a

least-element interpretation to Mangasarian ’s theory [5], [6] of

formulating some linear complementarity problems as linear programs .

In the present report, we extend our previous analysis to a more

general class of linear complementarity pr ‘1 ems investigated in

Mangasarian [7]. Our purposes are (1) t - onstrate how solutions

to these problems can be generated from least elements of polyhedral

sets and (2) to investigate how these “least-element solutions” are

related to the solutions obtained by the linear programming approach

as proposed by Mangasarian . - -  -~
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A LEAST ~:L~:~~F NT H~-~~RY

OF SOLVING LINEAR COMP L !~’E~ TA 1~ITY i k ~i. Et~S

AS LINEAR PRO GRAMS

by

Richard W. Cott1~ and Jong-Shi Pang

1. INTRODUCTION

In this paper , we study the linear complementarity problem of

finding a vec tor x c R~ satisfying

(1.1) x ‘ 0, q + Mx 0 and xT(q -f Mx) = 0

where the given n-vector q and n x n matrix M satisfy the

following three assumptions :

(Ml) M x = y + q c T

(M2) rT~ + >

(M3) rT(X+C) + sT (Y4~c > 0

whre X and Y are suitable Z-matrices (i.e., r eal square ma trices

whose off-diagonal entries are non-posizive) , C is a diagonal

matrix whose diagonal elements are the components of the vector c ,

and r , s and c are some non-negative vectors. We denote problem

(1.1) by the pair (q,M). Its feasible set is defined as the

polyhedral se t

X(q M) = {x  £ Rn 
: x 0 , q+Mx >

1



The l inear complem entar i ty  problem (q , ?~~ w i t h  t h ’  vec to r  q

and m~ t — : x  M sat isfying conditions ( M i )  — ( ‘ .1~~) has recent ly  been

studied by Mangasar ian [7 ]  who shows that such a problem can be

fo rmulated as the linear program

T( 1.  ~) min imize  p x subject  to x � 0 and q + Mx > 0

where p = r + M Ts. Our purpose in th is  report is to show that  th i s  result

is related to a theory of polyhedral sets h aving least  e i cm en t s .  (A vector

~ belonging to a set S C is said to be the least (gre~ te st~ element

of S j f ~ < (>) X for every x ~ S. )  The method of derivat ion used

by Manga sar ian is not based on least-element arguments . In a previous

repo rt [ a ] ,  the authors have applied this theory of polyhedral sets having

least elements to the particular case c = 0 and established that for

every n-vector q, the linear complem entari ty problem (q ,  M) has a

solut ion which can be generated from the least element of a polyhedral set ,

thus providing a least-element interpretation to the linear programming

formulat ion of the problem (q, M) which was init ial ly obtained by

Mangasar ian  in [ 5] .  In the present report , we extend our previous analysis

to the general case where c is merely non—negative , as described at

the beginning of the introduction . Our purposes are ( i )  to establish the

least-element characterization of a solution to the linear complementarity

problem under consideration and (2)  to demonstrate how this “least-element

solution ” is related to the solution(s) obtained by the linear programming

approach as proposed by Mar igasarian . Here , we should point out that  all

—2—
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the linear compIcwent ~u i ty prob leun ; , wh i ch are Its ted In Table I of [ 7 to bc

solvable us l tn cQr p rograms , sa t i s f y  condition s ( M l )  — ( M i ) . There fore the

lea s t—element  theory developed In the present report is op p l i c  Ic to a l l  of

them . However , it may not necessari ly be appl icable  to those problem s

sa t i s fy ing  the more general conditions in Theorem 1 of [7  1.

Jt would be appropriate for us to review some of the  e s s e nt i a l  resul t s

obtained in [ 2 1  for the par t icular  case c = 0. Using the some n ota t ions ,

we denote problem ( 1. 2) by the tri pl e (p, q, M) and by C the class of

square matr ices M for which there exist Z-matr ices X and Y such t li~~

the following two conditions are satisfied

(Ci)  M X = Y

( C a )  r~X + 5T~~> 0 for some r , s ~ 0

These are precisely conditions (M i )  - (M3) with c = 0. The following

proposition is an immediate consequence of the well-known theorem of

Kuhn-Fourier  [ 4 ]  on the solvabili ty of a system of l inear re la t ions .

Proposition 1. 1. Let X and Y be n X n matr ices.  Then the following

aie equivalent

(Ca) r
T
X + S

Ty >  0 for some r, s .~~~ 0

u > 0 ~~

( C2) ’ Xu <0  => u = 0

~u~~ oJ

We have es tablished useful necessary and suff ic ient conditions for

two Z-matriccs X and Y to sa t i s fy  condition (Ca) .  These are stated below.

-3-
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Lemiiia. 3 . 2 .  L’~t X and Y be Z-~m~ triccs of the same order . Then (C a)

holds if and only if there exist  a pr incipal  re arr ang em ent wi th  permutat i on

mat r ix  P and a p~ rt it toning of X and Y such th at

x
11 

x
12 

y
ll 

Y
12

( 1 .  3a) pTxp pTyp
X
21 

X
22 Y

zi 
‘
~
‘
22

x
l i  

x
lZ

( 1 .  3b) is a K—matrix .
Yzi Yzz

Using this  lemma , we have given necessary and sufficien t conditions

for M E  C .

~~ eorem 1. 3. Let M, X and Y be n ) n matrices with X and Y

both Z-rn atr ices.  Then

(C l) M X = Y

( C 2) rT
~ + 5

T~~> 0 for some r, S > 0

if  and only if there is a principal rearrangement and partitioning of M , X

and Y such that

M
11 

M
12 

X 11 X
12 

Y
11 

Y
12

( l . 4 a )  M 21 
M

22 
X

21 
X22 

= Y2~

x x
11 12

( i .~1b) 
~ 

is a K-matrix
21 22

(l.4c) X Is nonsingular

A ~(— m a t r i > ,~ also known as M ir ik ow skt _m a t r i x , is a Z- .:iatr ix wi th  a non—
negat ive  Invers e .

-4-
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The abov e— mc , i  t ioned l e a s t — e l e m e n t  resu l~ I o~ ~. L Ii i i .  ~ ~n’ plL ~ir .eh d~ I t y

problem (q, M) with M C is stated in the theorem bekw .

Theorem I. ~1. Let M t C and let X and Y be Z-mat r i ce~ sa t i s fyi n g

(Cl) and ((22). Suppose (q, M) is feasible , i.e. X(q, M) 
~ 4. Then

the polyhedral set

V = {v ~ R
n : Xv > 0, q + Yv �

contains a least  element ~~~~. Moreover , the vector ~ = X~7 solvc~s the

problem (q , M).

As a consequence to this theorem , we deduced that  for every vector

q E R~ , the linear complementarity problem (cj , M) with M c C can be

sol ved as the linear program (p , q, M) where the vector p is the (uni que)

solution to the system of equations

Tp X = f

for some positive vector f. We have also shown that the vector p

required in Mangasarian ’s theory can be obtained in precisely the same

way. In the last part of the report, we established several related matrix-

theoretic results , and demonstrated that C includes all the matrices

invest igated by Mangasarian in [ 6 ] .

We explain the notations used in the paper. JUl vectors and matr ices

under consideration are real. A Z-matrix X is said to be a j~~-matr ix

if (X + LI) is a K-matrix for every c > 0. The letters Z, K0 an d K

will also denote the class of Z- , K0- and K-matrices respect ive ly .
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r’~ 
— —---

—~~~
-—- -- - —- -~-——



Various characterizations of K— Ofl(l K0— r n at dcc .s can be found in [ 3 ] .
We denote the range space of a mat r i x  A by ~(A) , I .e .  ~(A) cons ists

of those vectors wh ich can be represented as linear combination s of the

columns of A. Let M be an n X n matr ix ,  if I , J ~ (1, . . . ,
we def ine

m . ... m . 
-

L i i i h i t

M
1~~= 

m.

:

. ... m . .

— 
i l l ‘s3t

where I = (i
1
, . . . ,i }  and J . . . , with 1 ~ i

1 
< • < i

s 
< n

and 1 < j  < < j ~ < n. in particular , M11 is a principal submatrix

of M. Similarly, if q c R~, we define q
1 

= (q1 , .. . ,q• )T, We denote
th ~ion vector ( i , . .. , 1)1 by e.

—6—
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a. C O N N I X TJ ON W I T J I LI2A8 I i:~

1 2 . 1 .  General d i scu ss i (~n . Let q be an h - V C c t ( , !  ~i~H M ~in n X h

matrix  sat is  fy in g  condi t ions ( M i )  — (M 3) for some Z—~~ it t  :c s X dfl

and some non-negative vectcrs r , s and c. Throu qhc .u t  th is  sect ion ,

these vectors and matrices are assumed to possess the pr~~ ert~es iu s t

mentioned. We shall develop a least-elem ent s tudy of the l inear

complerner itar i t y problem (q, M) with such a vector q ~r~i matr ix  M .

As a consequence of our invest igat ion , we shall es tab l i sh  a least-element

interpretation for the result  obtained by Mang a sar ian  [ 7 ]  oi formulat ing

such a l inear complernentari ty problen i as the linear progr im (p, q, M) with

p r + M Ts. We start by proving a lemma which strengthens condit ion ( M 3 ) .

Lemma 2. 1. Let c , r and s be non-negative vectors and let X and

Y be Z-matrices.  If condition (M3) holds , then

(M3 ) ’  r + s > 0

Proof: It suff ices  to show that for every i 1, . . . , n , r . 0 (s . 0) > s . > 0

(r . > 0).  So assume r . = 0 , say.  Theii

0 < ( r T( X  + C) + ST(Y + C)).

= ~ r X ,~ + s , Y .. + s .(Y .. + c .)
j : �j ~ j�j I ii  1 ii 1

< s .(Y ., + c .)— 1 11 1

Thus S
i 

> 0. Similarly,  we may deduce [s . = 0 ==> r . > 0]. Therefore

(M3) ’  follows. 0

— 7 —
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~~jjj~j rj~. (‘o~~li ttu~ ( M 3) ’ was r efuc  red t ’  ~~~; a s~ 
- 
~i1 case , I ta not  as a

consequence ul (M ~ in 7 ] . In lact , if  c 0 (as in Co~ til  iry I of I 7 ) ),
the two c~~uJi ~ions ire equivalent .

We recall that if M ~ C, the matrix X sati sfyin~ ((21) and ((:2)

m u s t  be nons in gu la r  ( Theorem I .  3). The fol lowin g ( x a r n p l ( :  i l l u s t r a t e s

th at t l icr e can he s ingu l a r  mat r ix  X s a t i s f y i n g  ( M i )  — ( M 3 ) .

Exc~m p l e 2 . Z .  Let q = (
~~~~

) and M - (
~ ~

). Th e proLl i ~ ~q, M) has

two solut io ns , namely ,  (~~~~~
) and (

~~
) .  11 X = (~~~ ~

), Y (
~~ ~~),

r = (
~~), s ~~) an d c = (

~~ ), the n con i it ions  ( M i )  — ( M 3 )  are sa t i s f ie c i .

Never the less , X is s ingu la r .  Moreover , it i s not ~r ird to ve r i fy  that  M ~ C.

The fact thj~ there exist such singular matrices X indicates that

in order to Jevelop a least-element  theory for the l inear  complemer itar ity

one should not merely concentrate on the range  space

of X. In fact, the same example above shows that Q(X) fl >a~q, M) =

Later in our discussion , we will see that this latter relation always holds

if X is s ingular  and the stronger condition (C2 ) is imposed (see

Proposition 2 . 2 6  and the remark following it).

It is clear that  i f  M c C , then conditions ( M i )  - (M 3) are sa t i s f ied

for every vector q. Nevertheless , if a mat r ix  M sa t i s f ies  ( M l )  - (M3)

for som e vector q, it does not necessar i ly  follow tha t  M C. Example 2. 2

i l lus t rate s this  fact .  The following provides another example.

— 8 —
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Exwn~~1e 2 . 3 .  Let q = (
~~

) and M (
~~~ ~

). TI~~h ~~~~~~~~~~~~ ( M I )  - ( M 3 )

are sa t i s f ied  with r = (~
) , s (

~) , c (
~

) , X z (
‘
~~ ~ anu  ‘1 (

We show M 4 C. Suppose not , t~~ rt t~ier~ ex i s t s ( X u ~~1~~
) 

e Z s i c~i tha t

• -l 1 x
11 

-x
12 -x

11 
- x~~ ~

2 -1 -x
2 X

2 
2x

1 
+ x

2 -2x
2 

- x
22 

Z

(x -x I -x -x x +x .U 11 12 11 21 21 22and (r , r ) I  F is , s > 0 for1 2 ~-x
21 

X
2 1 2 ~2x

1 + x  -2x
12 

-

some non—nega t ive  scalars r 1,r2, s 1 and s
~~

. It f~ 1i~~ws th at  ± x 2 1 < 0

which i mplie s x 1 ~ 

< - -
~~ x

21 
< 0. Similar ly ,  x

12 
F x27 < 0 impl ies

< -x12 < 0. Therefore Lemma 1 .2  impl ies  that

I— x  — x  x +x
I 11 • 2 1  12 22

E K

~2x + x
21 

-2x
12 

- x
22

In particular , det ~i 
- 

21 12 
+ 22 

>0. Since det M <0 , it2x
11 

+ x
2 -2x

12 
- x22

follows that

x -x

(2.1) det
( 

= - <0

Furthermore ,

x
11 

+ x
12 

<0 => x11 
>
~2l 

<0

We have shown that x
22 

< —x
2 

< 0; thus x 
1
x
22 ~ x2 1

x
2 

contrad i cting

(2.]). Therefore (
~~ ~

) 3 C. o

—9—
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The above examples illustrate that the present class of linear

coinp lernent arity prob lems (q, M) with q and M sa t i s fy ing ( M l )  - (M3)

Is a genuine extension of the previou s cl-ass of problems (q, M) with

M c C .  Example 2. 3 was used or~gin a l iy  in [7 1 by Mangasarian for
another purpose.

2 .2 .  The set V. We define

1~ = ( u E R : u > O , X u < 0 , Yu .~~0, 
T 

i }.

This polyhedral set ~ plays a very important role throughout our whole

• discussion. It may he empty, for example , if c = 0 as in the case of

M ~ C .  The following example illustrates that ft can sometimes be non-

empty as well.

0 3 4 —2
Example 2 . 4 .  Let M 1 —1 0 and q = 0 . Then wi th c = s = e , 

V

0 — 1 —3 1

2 —l -2
r = 0, X = — I and Y = —1 1 0 , conditions ( M l )  — (M3) are

-1 0 2

, 2/5
satisfied . In this case , u 2/5 € t~. We shall say more about this

1/5

example later.

The proposition below describes the relationship between vectors

in V (if any) and solutions to the linear compl ementarity problem (q, M) .

Proposition 2. .~~ If u E t~, then x = -Xu ts a solution to (q, M) .

Proof: If x = -Xu where u E ~ then x ~ 0; moreover ,

-10-
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q + M x q - M X u

= q - ( Y + qc 1 )u

= — Y u > 0

- i.e. x i  X(q,M). We also have

T T
= -(r X + s Y)u < 0

There fore , for each i = 1 ,n,

r.x~ = s .(q + Mx) .  = 0 .

If x. > 0, say, then r . 0. Condition (M3) ’ implies 5~ > 0 which

gives (q + Mx). = 0. Therefore the vector x d e f i m ed abc ve solve s the

problem (q, M).  Ii

Remark 1. In the proof above , the assumption that X and Y are Z-matrices

is required in order for condition (M3) ’  to be applicable . Therefore , if

condition (M 3) ’  holds by itself (as in Corollary 1 of [ 7 ] ) ,  then the

proposition is valid for any matrices X and Y (which are not necessarily

Z—matri ces) sat isfying conditions ( M i )  and ( M 2 ) .

Remark 2. The feasibility of the problem (q, M) is not a re quirement ,

but a consequence of Proposition 2 . 5 .

Proposition 2. 5 shows that if the set t~ is nonen ipty,  then a

sol-ution to the linear complementari t Y problem (q , M) can be obtained

by f i r s t  f inding any vector u in t( , or equivalent ly ,  solving the system

of linear ine quali t ies

— 1 1 —

_ _ _  

_

~~~~~~~~~~~ 
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u� 0 , Xu< 0, Yu~~~0 and ~~~

and then setting x = -Xu . The question of whether  V is n onem pty  is

i tself  answerable by linear prog wmrn inc j . The next p r o p o s i t i  ~i shows

that if V ~
‘ ~, then any vector x such that  x = -Xu for some u V

actually solves the linear program (p,q, M) where p = r + M Ts.

~~qposit ion 2 . 6 .  If u i ~ , then ~ = -X~ solves the l inear  program

T(p ,q , M) with p r +M S.

Proof: If x € X(q , M), then

V T T T Tp x = (r 4 s  M ) x > - s  q

On the other hand , the proof of the last proposition shows that

= —Xii X(q , M) if U V .  Furthermore , with such an x , we have

T_ T T
• p x = — ( r  +s M)XU

T T —  T T
= — (r X + s  Y)u — s q  —s q

Therefore , any such 3~ solves the linear program ( p , q ,  M) .

Corollary 2.7. If M is nondegenerate r, i . e .  every principal submatrix

of M is nonsingular) and if V � 4, then the linear program (p, q, M)

with p = r + M T5 has a unique solution ~~. Furthermore , i~ = -Xu for

every u € V .

Proof: That the linear program has a solution ~ follows from Proposition 2. 6.

To ‘show its uniqueness , let x be a solution to (p, q, M).  Then the

proof of Proposition 2. 6 shows that , in fact ,

T T
r x = s  (q + M x ) = 0 .

— 1 2 —

-

~~~~~~~~~~ ~~~~~~~~
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If 1 (1 : r
1 

> o) and J (1, . . . , n)\ I , the-n x. must  r i i c s ~~ir i Iy

sa t i s fy  the following system of equat ions

0 1 0
( 2 . 2 )  + = 0 .

q
~ ~~ ~~~ x~

Here we have used the fact that s~ > 0 by (M3)’. fly the nondegeneracy

of M , the system ( 2 . 2 )  has a uniqu e so lu t ion .  This e s tab l i s he s  the

• uniqueness of ~~. The last  co~icl us ion of the corollary is immedi a te .

Remark. The matr ix  M in Ex ample 2. 4 is degenerate; nevertheless , the

V proof of the corollary shows that any solution to the linear program (p, q, M)

must  sa t i s fy  q + Mx = 0 .  Since M is nor i singu lar , the LP-solution

2/5
• x 2/5 J is unique . This solution was also obtained in [ 7 ]  by actually

l/5~

applying the simplex method to the linear program . Its uniqu eness  was

not proven there .

The results above establ ish the re la t ionship  between vectors in ~i,

solutions to the linear complementarity problem (q , M) and solutions to
V 

the linear program ( p , q ,  M).  In the sequel , we divide our i iscussion into

cases . In each case , we shall construct a polyhedral set having a least

(or greatest) element and demonstrate how a solution to the  linear comple- V

mentar i ty  prob lem can be generated from this element.  In the analysis , we

shall need two fundamenta l  resul ts  from lattice theory. These are stated

In Propositions 2 . )  and 2 . 1 0 .  Their proofs are easy and are omitted.

—13—
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V

Defin i t ion  2. .~~~ Let S be a subset of R~ . Then S is satd to be a

meet (j~J~ ) ~em 1 — s u b J a t t i c e  (of R~ ) if for every s , t C S, the meet (j~j~)

of s and t , defined as the vector u = (u 1) where u1 min(s ., t .)

(max( s ., t .))  for every i , belongs to 

n

5

~ 

The set S is bounded k~ Lo~

(above) if there exists a vector s e R such that  s 
~ 

(
~

) s for every

S E S.

~~~~gsit ion_2.1. The following are equivalent :

• 1) L is a polyhedral meet ( jo in)  semi-sublat t ice of R’~.

V 2) L z {s R~ : As � b} for some matrix A and vector b, with A

having at most one positive (negat ive)  element i’n each row .

P~~2p sition 2. 10. Let L be a nonempty meet ( join)  semi-sublat t ice of R” .

If L is closed and bounded below (above), then L has a least (greatest)

element.  Furthermore , this element can be obtained by solving

(2 .  3) minimize (maxim iz e)  f x subject to x E L

for any positive vector f.

We should also mention that a least (greatest)  element of a meet (jo i n )

semi-sublat t ice L of R’~ actual ly solves the program (2 .  3) for any non-

negative vector f and it is the unique solution if f is positive .

In the theorem below , we describe a polyhedral set with a least

element and show how this element can easily generate a solution to the

problem (q, M) in the case V ~
‘ 

~~
.

— 1 4 —

_ _ _ _  
-



V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-~~~~~-~~~~~~~~ 

j

Theor em 2. I I  . Dc f i n e

= fl {u R~ : u < 0, Xu -~ 0, Yu 0, c u . ~ — i )
1= 1 

— — — i t

- Then ~ has a least  element U. Furthermore , i f  ~ I $, the n ~
TU~~ -l

V and the vector ~ = -x solves the linear compl ein ent ar i ty  i .rohlenr (q, M) .
C u

Proof: Proposition 2. 9 implies that a is a meet sem i-subla t t ice  Of R’~.

It is obviously closed arid nonempty  because o i 3. We show th at 3

is bounded below. Let u c 3, clearl y u . 2 -i/ c . for every i e I

where I = {i : c. > 0) .  Furthermore , lett ing J = ~i : C . = o}, we have ,

(2 .  4a) ~~~~ > —X~1u 1 >

and

(2.  4b) ~~~~ > ~~~~~ �

where d = (d .) is the vector with d . = -1/c . for i E I and o other-

wise. On the other hand , it follows from condition (M3) that

r~X~1 
+ s~ Y

11 
> -(r~X1~ + s~ Y1~) � 0 ,

i .e .  the Z-matrices X
11 

and ~~ sa t i s fy  condition (C2) .  Therefore by

x
Lemma 1.2 , the matrix contains a complementary submatr i x  which

JJ
is Minkow ski .  This fact , together with inequalit ies (2 .  4a) and (2 .  4b)

implies that  u~ is bounded below by some constant vector. Hence 3 is

bounded below. Therefore it has a least element U by Proposition 2 . 10.

— 1 5 —
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Clearly -u c 3 11 u c V .  Thus , U< -u for every u i V . Hence

cTU < — 1 If ~ ~‘ 4 .  It Is then cle~~ that i V . Therefore the las t

asscrt aiorr of the theorem is an immediate  consequen ce of Pro position 2. ni . u

Remark.  The assumption ~ ~ 4’ is essential in order for the vector ~

in the theorem to be well-defined , because otherwise , ~~~ might  be

zero (e.g. c = 0).

Example 2.12. Consider the problem (q, M) in Example 2.2. We have

V = {(~)} and

= {(~~
) E R 2 : u 0 and -Z < U

2 
<0)

The least element of 3 is (~~ ).

+ x2 
= 2 

/
x l~~~ 7 =>/

/(\ X(q,M)
3 1 \ \ \  \ This is the solu ~~on

~2 ’ 2~ \ \ \ \ ~~~~~~~~~~~~~~~~~

, 0) ( p , q , M).

Both are solutions
to (q,M).

Fig. 1. V � 4’ .

— 1 6-
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Combining Theorem 2. 11 with CoroLlary 2. 7 , we con clude that if

V 

M is nondegencrate and I f V 4’, then the ( u n i q u e )  so luth n to the

linear program (p, q, M) is given by the vector ~ -X -
~~~~

— whe re U

is the least element of 3. This result  provides a leas t-e lement  interpreta-

tion to the solution of the linear program introduced by M an ga sa r i an .

2. 3. The ca~ e where V = 4’ and X is nons ing .~~~~ Hav ing  completed

our discussion of the case V 
~
‘ 4’, we proceed to inves t iga te  the case

V = 4’. We establ ish the following important  lemma .

I .emma 2 . 1 3 .  If V = 4’, then the following implication holds

u > 0 ~~

(2. 5) Xu <0 =.=> u = 0

Yu <0 J
Proof: Suppose there exists a nonzero vector u such that u � 0 , Xu ~ 0

T - u V

and Yu < 0. Then we must  have c u 0 because othe rwise e V

c u
contradicting the assumpt ion.  Thus , Cu = 0. Hence ,

0 < [r T(X + C) + sT(Y + C)]u

< (r
T 

+ S
T

)CU = 0

which is a contradiction .

In fact , the converse of Lemma 2. 13 holds , namely ,  if ( 2 . 5 )  holds ,

then V 4’. Now , by Proposition 1. 1, condItion ( 2 . 5 )  is an equivalent

formulat ion of condition (CZ ) .  There fore , adding the assumpt ion  ~ 4’

to ( M l )  — (M3)  is actually equivalent  to replacing conditions ( M2)  and (M3 )

by the single stronger condition (C2) .  
V

— 17—
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‘V C o r of l a r i 2 . I . L  Let t~ = ~ . Then

u / 0 , xu = ° = > cru / 0 .

Proof: Indeed, if there exists a nonzero vector u such tha t  Xu 0

and ~~~ = 0. Then i t  follows from ( M l )  th at  Yu - 0. But this is

impossible because by Lemma 2. 13 above and L e m m a  1. 2 , the mat r ix  (~~
)

contains a nonsingular  complementary submatr ix;  th is  lat ter  fact  impl i es

• u = 0, contradicting the assumption . o
We have given an example earlier illustrating that there can be

s ingular  matr ix  X sa t i s fy ing  conditions ( M l )  - (M3) .  The proposition

below shows that if V .= 4’, such matrice s have rank at least n - 1.

Proposition 2. 15. If ‘
~~ = 4’, then rank (X) > n — 1.

Proof: Suppose rank (X) <n 1. Let u’ and u2 be two linearly

independent vectors such that Xu 1 
= Xu 2 

= 0 and cTu 1 
= cTu Z 

= i .

The existence of these vectors follows from the assumption and Corollary 2. 14.

We then have

1 T I  2 T 2
Yu + q ( cu )= Y u  + q ( c u ) = 0 .

Thus ,

Y(u 1 
- u

2
) = 0

Bu t we also have -

X(u 1 - u 2 ) = 0 .

Therefore , u’ u~. This contradicts the linear independence of u
1 and U

2
. ri

It is clear that thore are instances when X is nonsingular, e.g.

c 0. The example below Indicates that the case where rank (X) n - I

— —- 
-V  — 
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ts also possible even if ‘
~
. 4’. Later In our ( l iS C LI ~~ .t O f l , we sha l l  pr ovide

necessary am i d su f f i c i en t  condi t ions  for X to be n~ i n j u 1 a r  (see Theorem 2.22).

Example 2 . 1 6 .  Let q = (
~~~) and M (

~~ ~). The pNJ~~- m (q, M~ has

0 l 0 ~ 0 0  1a solution 
~~~ 

Now let X = 
~~~ ~~~

, ~
‘ = c = c, r = and

s = (~ ). Then MX = v + qc T and r TX + 5 T~~> 0. There fore ~i =

Nevertheless , X is of rank 1.

In the sequel , we shall  f i r s t  es tabl i sh  the I e a r t - e I c ~m~ i it  r esults

for the case where X is nonsingular .  Then we shall  prove two characteriza-

tion theore m s having to do with the nonsir igular i ty  of X. Final ly ,  we 
V

shall invest igate  the las t  case , namely,  where .X has rank n - 1.

If X is nonsingular , then the linear complementa r i ty  problem (q, M) V

is equivalent to the following complementarity problem (LECP
1
):

q(1 + c
Tu) + Yu � 0 , Xu ~ 0 and [q ( i  + cTu) + y~j Tx0 = 0

The equivalence is based on the t ransformat ion x = X u .  It is clear that

x is a (feasible) solution to the problem (q, M) if and only if u = X 1 x

is a (feasible)  solution to the problem ( LECP
1). Let 

~l 
denote the

feasible set of the latter problem , i .e .

= (u E R” : q(l  + CTU) + Yu > 0 , Xu > o }

proposition 2 . 1 7 .  If V 4’, then 1 + 
T 

~ 0 for every u €

Proof: Suppose there is a u ~ such that 1 4- T 0. Then it follows

that Yu > 0 , Xu .~~~ 0. Since the matr ix  (
~~

) contains a Minkowski  comple- V

mentary  submatr ix , we mus t  have u ? 0 contradic t ing  the assumption that

V 
i ÷ ~~

T
~~= o .

-19—
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By the convexity of it follows that  one arid only one 01 the

following two statements must hold :

(2 .  6a) ~ + c~
’
u > 0 for every u 

~

(2 .  6b) I + cTu < 0  for every u . 
V

Lemma 2. 18. Let V = 4’ and � 4’. Suppose (2.  6a) ( (2 .  L h) )  h u b i s .  Let

= {v € R’~ : q + Yv > (<) 0, Xv > (~ ) 
n}

Then 
~l has a least (greatest) element V sa t i s fy i ng  c~ v ( >) I .

Furthermore , (q + W) T( XV) = 0.

Proof: Proposition 2 .9 implies that ..8w~ is a meet (j o in)  semi-sublattice

n - . xof R . It is obviously closed . The fact that (~
) contains a Minkov isk i

complementary submatrix implies that is bounded below (above).  We

show tnat it is r ionempty. Let u € satisfy 1 + c u > (<) 0 , then

it is not hard to see that the vector

( 2 . 7 )  v =  — U

l + c u  V

belong s to .

~~~~~~

. By Proposition 2 .10 , .b~ has a least (greatest)  element V.

That V sat isf ies  cTV < (>) 1 is clear because V < (i) v and ~~~ < (>) 1

where v is the vector defined in ( 2 . 7 ) .  To show that V satisfies the

complementarity property, we re fe r the reader to the proof of Lemma 3. 10

i n [ 2 ] .  V

Remark. The polyhedral set does not depend on the vector c. If

(2. 6a) holds , this set .b
1 

is precisely the set V mentioned in the in t roduct ion .

-20— 
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The following r e su l t  genera l i z e s Theorem 1 - I ~~~r 13i1;ler I to ~i i ’ ~

problem (q , M) wi th  M (‘ which  con espend s to t h e  eu~e C = 0.

Theorem 2. 19. Let ~ 4’. Suppose X i~. n o n s i n r j u l a r  j i i J  the r~~ L:~~m

(q, M) is feasible. Then the vector

( 2 . 8 )  = x (  v )

where V is the vector ob ta ined  in Lemn~a 2. 18 , i~ 3 ~~i 1 u L iOU to the

li near complementar i ty  pro b lem (q . M ) .  V

Proof: In fact , if x X(q , M) ,  the n 
_

u = X ’x ~~~~~~ . Therefore m e

vector v ~s wel l -def ined an o so is u = T It is easy to sh ov;  V

that U solves the problem (LE CP 1 ).  There fore by the equiva lence  of

the problems (q, M )  and (LECP 1 ) mentioned earl ier , it follows th at the

vector ~ defi ned in (2 .  8) solves the problem (q ,  M) .

Theorem 2 .19  shows how , under the a s sumpt ions  in ~he thc~ re :r~, a

soluti on to the l inear comple m entar i ty  problem (q ,  ~i can be ge cr c1te~l V

f rom the least (or greatest)  e lement  of the polyhedra l  set 
~~

. One

notices that in some instances , th e l inear  comp lement ar i ty  problem has a

solution generated from the greatest  element  of a polyhedral  se t .  This

may seem , at f i rs t  g lance , somewha t incons is ten t  w i t h  the t i t le  A leas t-

element theory ... “ of the report and wi th the phrases “le as t -e lement

sol u tions ” , “ leas t —element  char a c te r iza t ion ”, etc . . .. which have been

used throughout  the report .  However , i t  is not hard to see tha t  such

—21—
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gre ates t—element  resu l t s  can always be changed t ide lea~;t 
(V  l em ~~~V n t  r (.~;u 1t~

by a very t r iv ia l  m odi f ica t ion , namely ,  by cons ider ing  th e n e g a t i v e  of

the polyhedral sets ha v ing  the greatest  e lements .  We h ave  n n t  made th i s

change of variables In Lemma 2 . 1 8 , and wi l l  not do so later ~V ecJuse  We

want to present the results in their most na tu ra l  format .

In the sequel , we establish a re la t ionsh ip  between the vector x

generated in Theorem 2. 19 and the so lu t ion ~s) to the li near pr ogram

(p, q, M) with p = r + M Ts. Spec i f i ca l ly ,  we show that  ~ solve s any

such linear program; moreover , it is t he uni que solution if the vectors r

and s satisfy the stronger condition (02).

If X is nonsingular , then under the r ionsingu lar t ransfor mation , V

x = Xu , the linear program (p, q, M) is equivalent  to

(2 . 9)  minimize (p TX)u subject to q + MXu ~ 0 and Xu > 0

Noting that
T T T T T T Tp X = (r + s M)X = (r X + s Y) + (s q)c

we may write ( 2 . 9 )  as

(2. 10) minimize (r TX + sTY)u + sTq( l  + cTu) subject to u e

In order to s impli fy  the following discussion , we assume that (2 .  6a)

holds. Since V is the least element of 
~~

, it solves the linear progra~

(2. i i )  minimize f T subject  to v € 
~l

for any nonnegative vector f , and it is the unique solution to (2 .  I l )  for

any positive vecto r 1. It  is then easy to deduce that the vector

— 2 2 —
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(2 .  i z )  U = ~~~~~~~~~~~~~ (or e q u i v a l e r . t iy ,  ~
l - c ~~ l~~~ C u  V

solves the ( f rac t ional )  p ro yr aLu :

T V

(2. 1 3) m i n i m i z e  ~ 
T sub j e ct  to U ( 

~

V for any nonnegative vector f , a nd it  is th~ u n i q u e  sol u t ion  to (~~ 
3j f~ V

any positive vecto r 1.

V 
Theore m 2 . 2 0 .  Let 1~ ~~~ . Suppose X is rm onsw i~~lai c n i  (q ,  1-il ) is

fe asible.  Then the vector  ~ (deiinecl in (2.8)) solves the l in ’ .1 prc~~ r V i ~n

(p,  q, M) with p r + M TS. Moreover , it is the u n i q~ e ~c l u t i L ~ to any

such linear program with r TX + 5Ty >  0.

Remark.  This theorem is valid no matter  wh ich  one of tn c two i n eq ua l i t i e s

(2 .  6a) and (2. 6b) is valid. To simpl i fy the pr oof i~~C I O . .V V
, we C o n t n i u e  tO

assume (2.  6a) holds.

Proof of the theorem: It suffices to shc’.v t h a t  the veV :t c~ iT (~i o r t n c

(2 .  12)) solve s (2.10)  and u is the uni qu e so1ut~~n tc ~2. ‘) i~

r TX + 
Ty >  0. Let u 3~ , t hen - U~~~ ~ Tri ~~s

1 4 - c u

T T U V T  T , u
(rX+ sY)~~~~~~~~<~ r X i ~~ i’ ) -  

T
l + c  u I ~~~~~ ‘ u

which implies

T T —  T T_ T . T T T i - ~ c T 7
(2.14) (r X 4-s Y)u + s q(1 + c u) < {( r  X ~- s  Y)u + ~ q ( I  + c u ) ]  __ V - V _ —~~~V 

V

I V 4 V c u

—23—
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Furthermore , we have

— U u
v =  T=~~~~~~~~T~~~1 + c u  l f c u

Hence ,
T_

1 + c u

I + c  U

On the other hand ,

(r TX + .s~ Y) u + sTq( l  + cTu) = r T(Xu ) + sT(q I Y  ~c ) u  > 0

There fore , for u

(r T X + sTy)ti + sTq(l  + cTu) < ( r TX + sTy)u + 5
T

q 1 1  ~ cT
u)

i. e. ~ solves (2 . 10 ) .

Conversely, if u solves (2.  10), then (2 .  14) m c s t  hoLJ as e q u a d t y .

Therefore , we have

(r TX + sTY) ~~~~~~ = (r TX + $ 
T~) U

1 4 - c u j + c u

i . e .  u also solves (2.  13) . Now if rTX + ~T~~> 0 , i t follows from the

uniqueness of U that u = U. o
Example 2 . 2 1 .  Let q = (

~~
) and M = (

~~ ~). The problem (q,M) has

solutions (~
) and (~ ).  If X = (

~~ ~), ‘1 = (
~~ ~), r ~~~ 

s (~~
)

and c (
~ ), then MX = Y + qc T and r TX + 5Ty >  0. It is not hard to

show that M~~~C .

— 2 4 —
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Zx +x = 1

V 

- 

(0,1) X(q , M)

This is the solution given by

V ___________ /i,!!, (2.8) in Theorem 2.19.

(1 , 0)

/
/K

xl 
+x 2 = I

Fig . 2. ~ = $ and X nons ingular .

V
1 

= 0

— — v
1

+4v 2 1

_ _ _ _  
i i i i iE ~~~~~~~ ~~v = 0

— 

(-2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

least element

Fig. 3. The set .b
1
.

— 2 5 —

V
V V V

~~~~~~~~~V~~~~~~~ 
~~~~~~VV ~~::.~I::i 

~~~~~~ ~ V- V~ V V 
V

-- V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



V 
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Before proceeding to study the case ran k  (X) n - 1 , we prove

V 

two theorems. The f i r s t  of which  characterizes the n o r . s i n y u l a r i t y  of X;

whereas the second provides necessary arid su f f i c i en t  condit ions for

(2. 6a) and (2 .  bb) to hold. As a consequence of the theorems , we deduce

that the assumptions in Lemma 2 . 18 and Theorem 2. 19 are actually

equivalent.

V Theor~j~ 2.22. The fol lowing two conditions ( 2 . 1 5 )  and (2.  i6) are oquiva!er ~::

( 2 . 1 5 )  X is nonsingular

(2.  i6) there exist a principal rearrangement , with permutat ion .ma trix J~, V

and partitioning of X, Y, q and c such that

V x x Y Y
11 12 11 12

( 2 . l 6 a )  pTxp = 
~~ 

~~~~
2 1 22 21 ?2 1

(2. i 6b) pTq pT~ 
cq2 2

(2. 16c) and (Y22 
- Y

21
X
1~
X
12
) are nonsingular

(2 .  1 6d) 1 + (4 - c
TX

1~
X
12

)(Y
22 

- y
21
x~~X12~~

’q
2 
� 0

Proof: That (2.  i S)  implies (2 .  16) is trivial.  For the converse , it suff ices

(see I i ] )  to show that the matrix X22 
- X

21
X~~X12 

is nonsingular.  We have

M
11 

M 12 
x11 

x
12 

y
11 

y
2 

q
1
c
T

M
21 

M22 X21 
X22 

= 

~21 
+ q c

T P

-26-
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Solving for M 21 in

M 21 X
11 

+ M 22 X21 = Y
21 

+ q 2c~

gives

M 21 = (Y 2 1 
- M 22 X

21
)X~~ + q 2c~ X~~

Substituting this latter equality in

M 21 X
12 

+ M 22 X22 
= Y~2 + q

24

yields

M 22
(X

22 
— X

21
X~~ X

12
) = (Y 22 

— Y
21

X~~ X
12

) + q
2(4 — c~

’
X~~ X

12
)

= (Y
22 

— Y21X~~X12)[i + (Y
22 

— Y21 X X
12

)~~q 2(4 — c~ X~~X
12

) ]

Condition (2. i6d) implies

det[ I + (Y22 
- y

21x;~x12)
_1

q
2(4 

- c~X~~ X 12 ) }

= 1 + (c~ - c~X~~X12
)(Y

22 
- Y

21
X~~X12

)q2 ~ 0

This establ ishes the nonsingularity of X22 
- X2~ X~~ X~ 2 . 0

Remark. The argu m ent used above is a generalization of the one in

Theorem 1. 3 for the case M E C. In the proof, we have used the

condition (Mi) only. So In fact, the theorem prov ides necessary and

sufficient conditions for the matrix X (not necessarily Z-matrix) satisfying

MX Y 4~ qc
T for some matrices M and Y (not necessarily Z-matrlx)

and some vectors q and c (not necessaril y non-negative), to be

nonsingular .
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Theorem Z . 2 3 .  Let i.i 4’ . Suppose’ 
~ l ~ ~ 

Then (~~. ~o) (Y .  I V L ) )  hic~~1~

if and only if there exist a principal reurrangeint -ot V~ V~ i t ! ,  p - r  Lu:u t t  fl m a t r i X

F , and par t it ionin g of X , Y , q ar. :~ c such t h a t

x x y y
V 

(2. 17a) PTXI) 
(k :: ~~~::) ~~~~ 

(i-:: 
V~~~~~

)

q c
1

(2.1 7b) P~q = p T~ 
-q

2

X X
I l 12

V ( 2 . 1 7 c )  ,

~

. 

~~~21 22

(2. 17d) 1 + (4- c~X 1~
X
12

)(Y
22 

- Y
2 

X
1~

X 1 1 )a
2 

> (~~) 1)

Proof: “Sufficiency ”. Let u € ~~~~~~ . Then we have

0 X
li 

X~~ U
1

T 
+

+ c u) Y21 
Y22 a 2

~ 
-1

Condition (2.  17c) implies that  ~~~ ~~2 
~ 0; th as

21 22

x x
V ( 2 .  18) 

(v:: v::) (q
)(1 + oTu ) + u ~ 0

ft 1 1Let t = 11~ )  
satisfy

2 
x

11 
t 1 

- 

0

‘
~2l 

‘12 2 /  t 2 
— 

q
2 !~

—28—
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Then ,

= —x~~x12t
2

and ,

(Y 22 
- y

21
x~~ X

12~~~q 2

We can write (2 .  18) as

t(i + C TU) + u -~~~ 0

which implies

(2 .  20) (i + c
Tt)(l + c

T
u) > 1

Now , by condition ( 2 .  17d)

(2. 19) 1 + ~~ 1 +(4 - c~X~~X12)t2

1 + (4 - á~X~~X12 )(Y
22 

- y
21
x~~x12r

’q
2 > (<) 0

Therefore 1 + ~~~ > (<) 0 for every u € i.e. (2.6a) ((2.6b)) holds .

V 

“Necessity”. The existence of the permutation and partitioning such that

conditions (2 .  17a) - (2. 17c) are satisfied is an immediate consequence

of the assumption ~ = $ and Lemma 1. 2. So it remains to verify (2. l i d) .

The deduction above shows tha t ( 2 . 2 0 )  is valid for every u € Now

* $ and (2.6a) ((2.6b)) holds, then it follows from (2.20) that

1 + ~Tt >  (<) 0 , or equivalently, (2 .  17d) holds. 0

We have seen that I f X is non singu lar and if the problem (q , M)

is feas ible , then � $. Combining Theorems 2. 22 and 2. 23, we

conclude that I f t4 = $ and If $ then (q , M) is feasible (I n fact ,

has a solution ) and X must be nons ingu lar.
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Corollary 2. 24. If ‘~ 4,, the following are equivalent

(2 .  21)  X is nonsingular and (q, M) has a solution (given by (2.  8))

( 2 . 2 2 )  1~ 4,

2 . 4 .  The case where V = 4’ and X is singular .  In the rest of this

paper , we investigate the remaining case , namely t~ = 4, and rank (X)

= n - 1. Let u° be the (unique) vector satisfying

0 T OXu 0 and c u 1

The existence of such a vector follows from Corollary 2 . 1 4 .  Then , it

follows that

(2 .23)  q -Yu°

Let U
1 be a nonzero vector satisfying xT

~ 1 
= 0. It follows from

elementary linear algebra that, for any x € R’1, there exist u ~ R~
1and a € R such that

( 2 . 2 4 )  x = Xu +

Under such a represen tation , we have , by (2. 23)

q +  Mx = q + MXu + aMu ’

= q(l + cTu) + Yu + aMu’

= Y[ u - (1 + ~
T

~~~
O

i + aMu 1 
.

Proposition 2.25. Tinder the Identification (z .  24) , the linear complementarity

problem (q, M) is equivalent to the problem (LECP 2
) of finding a vector

u e R~ and a scalar a such that

—30—
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V 
aMu 1 Vf ~~ u - (1 + c

Tu) u O
J > 0

au ’ + X [ u  - (I + e u)u J > 0

[aMu 1 + Y(u - (1 + c i u )u O ) 1
T [c ~u l 4. X(u - (1 4 cT&u 0) j  = 0

Let denote the feasible sot of (LLCP
2
), i.e .

= {( U
) R~~

1 : aMu ’ 4. Y(u -( 1 + C
rU)U ~~ > 0 , au ’ + X ( u  - ( 1  +c T u)u O) ~

Proposition 2 . 2 6 .  If ~i ~ , then a ~ 0 for ever y (
U

) 

~~~
. 

V

Proof: Suppose there exists such that  a 0. Then

u - (1 + C
T

U U
O 

I ~ 0

X[u  - (1 + T ) O ] > 0

Hence , by Lemma 1.2 , it follows that u - (1 + cTu)u fl 
> 0. Thus

o < c T[ u - (1 + 
T ) O ] = -l

which is a contradiction . 0

Remark. Au equivalent formulation of the conclusion in Proposition 2 . 2 6

can be stated as X(q, M) fl Q(X) = 4,.

By the convexity of it follows that one and only one of the

following two statements must hold:

V ( 2 .  25a ) a > 0 for every (~1
) 

~~~

(2 .  25b) a < 0  for every (
‘i

) €

Lemma 2.27. Let 1.~ = 4, and ~ 4,. Suppose 
(~~. ZSa ) ( ( 2 .  ZSb )) holds.

Define

= (v € : Mu ’ + Yv ~ (<) O , u1 
+ Xv ~ (~ ) o }
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Then .b~ has a least  (greatest)  elem ent ~ s aU s fy i n g  c~~ ( > ) 0 .

Furthermore , (Mu 1 
+ Y~) T(u 1 

~ X~) = 0.

u 1 T O  T I
Proof: If 

~~ 
€ then v = — ( u  — (1 + c u)u  ) ~ ~ 2 and c v = -

The rest of proo f proceeds in the same way as in the proof of Lemma 2.18.

V Theorem 2 . 2 8 .  L~~t ~ 4,. Suppose rank(X)  = n - I and the problem

(q, M) is feasible . Then the vector

(2 .  26) — + u1)

where v is the vector obtained in Lemma 2. 27 , is a solution to the linear

complementarity problem (q , M).

Proof: The assumptions in Lemma 2 .27  are satisfied . Therefore , ~ is

well-defined . It suffices to show that 
V_ 

= - and ~~ = - solves

the problem ( LECP 2) . Noting that 1 + cTU = 0, we can easily deduce

that (_) indeed solves (LECP 2). This establishes the theorem. o

Having demonstrated how , under the assumptions of Theorem 2 . 2 8 ,

a solution to the linear complementarity problem can be generated from the

least (or greatest) element of the polyhedral set we next establish

a relationship between this solution ~ and the solution(s) to the

linear program (p, q, M) with p = r + M Ts.

Th eorem 2 . 2 9 .  Let t.~ = 4,. Suppose rank (X) = n - 1  and ( q , M) is V

feasible. Then the vector x (defined in (2 .  26)) solves the linear pro gram

(p,q, M) with p = r + MTs. Moreover I t is the uni que solution to any

such linear pro gram with r TX + 3
T

y >  0 .
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V Proof: Assume for s i m p l i c i t y ,  that  ( 2 .  2 5 a)  hold s .  The ~rg urnen t  which

follows is similar  to that  of Theorem 2. 20. Let x = Xu 4 ~ X(q ,  M ) ,

then v 1(u - (1 + cTu )u O) ~~~~~~ . Hen ce we ha ve

— 1 T Ov < ~~ u - (1 ~ c u)u

which implies
T_

C v < - —

Moreover , by (2. 23),

( 2 . 2 7 )  ( TX + 5 T~ )~~< ~~(r TX ~ sTY)( u - (I + cTu)u O )

= _ 4 ( rTX + sTY)u i~ 5Tq~1 + T ) l

Furthermore ,

rT(Xu f au 1) + 5
T {q + M(Xu + au 1) j  > o

Combining the above inequalities , we deduce ,

T 
= (r T 

+ S
TM)( ~~~~~ ~~~ + u ’))

c v

= - ~~~ [( r TX + 5T~~~ + sTq(cT~) ± (r T 
+ sT M )u h j

< 
1
[
1 {( T

x + sTy)U + a(r T + sTM)u l 
+ sT

q(l  + c
T
u))J - 5Tq

= (- ~~~~)(i) [r T(Xu + au 1) + sT(q + M(Xu + au 1) ) ]  - g Tq

T T T
,~~ (r + s M ) x = p x .

Therefore ~ solves the linear program (p, q, M ).
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Conversely , if x ts a solution to (p ,  q, M) ,  then we m u s t  have V

equality in (2. 27). If r
T
X + 5

T~~> 0, t hen by the uniqueness  of v, i t

follows that ~ = ~~(u — (1 + c
T
u)U

O
). Thus a - - and Xu z - X~~.

There fore , x = Xu + au ’ = - 
~~~~ + u 1) = ~~~~. Thi: e s tab l i s h e s  the

theorem. 0

We conclude this paper by proving ] result  (Corol lary  2. 31) which

streng thens Corollary 4 of M angasar ian ’s repo r t [~ ] where it  was shcwn

that if n > 3 and M. is a positive m a t r i x  which is diagona l ly  dominant

column-by—column, that is, m . - m ., j = 1, . . . ,n, then conditions
)

(M l)  - (M3) are satisfied (in fact for every n-vector q) .

Proposition 2. 30. Let M be an n X n matrix sa t i s fy ing

(2. 28a) MX = ‘1 for some X, Y c Z

(2. 28b) r
TX � 0 for some r > 0

(2. 28c) Y = (‘1.,) is such that Y ..  < 0 for every j � i

Then M E C .

Proof: Let ~ > 0 be small enough such that Y + eM Z. Then

M(X + cI) Y + eM and X + ci € K. Therefore M C.

Corollary 2. 31. Let n � 3 and let M be a positive n X n matrix

which satisfies either of the following conditions : 
V

(2 .29 a )  dia gonal dominance column -by-column: rn . ~ m . , ,  j = 1, . . .  
V

~ i~ j J

(2. 29b) diagonal dominance row-by-row: m~. ~ ~~~ ii = 1, .  . . , n
J*i

Then M € C .
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Proof: We may wi thout  loss of general ity ,  assume ili ~ t M has been

normalized so that it has ones on the dia gon al.  Let M - I ~ F where

F = (F ) , F. = 0 and F . ,  m , ,  for i V~~ j •  Define X I - I’ andI .~ 11 
V 

V

Y MX = I - F2 . Clearl y X and Y Z. Furthermore . it is easy to

see that condition (2. 28c) is satisfied. We show that (2. 28b) is also

satisfied. It is clearly satisfied if ( 2 .2 9 a )  holds . Now , if ( 2 .  29b)  is true.

then X E  K 0 (by Theorem ( 5 . 4 )  in [3]) and X is irreducible (see [ 8 J ) .

The se two properties of X imply (2 .  28b) (by Theorem ( 5 . 8 )  in [ 3 ] ) .

Consequently, by Proposition 2. 30, M E C. ci
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